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Abstract:This paperdiscussessomeof the problematicaspectsof the Bayesianfirst-principles

“proof” of Occam’srazorwhich involvesOccamfactors.Althoughit is truethattheposteriorfor

amodelis reduceddueto Occamfactorsif thatmodelis capableof expressingmanyfunctions,the

phenomenonneednot haveanythingto do with Occam’srazor.This papershowsthis by i) per-

forming reductio ad absurdum ontheargumentthattheOccamfactorseffectimpliesOccam’sra-

zor; ii) presentingan alternativeBayesianapproachwhich explicitly doesnot result in Occam’s

razor;andfinally iii) disentanglingtheunderlyingproblemwith viewing theOccamfactorsargu-

ment as a proof or “automatic embodiment” of Occam’s razor.
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INTRODUCTION

This paper concerns the problem of inductive inference of input-output functions, sometimes

also known as (supervised) machine learning. Special cases of the problem are regression and clas-

sification. For current purposes the problem can be formulated as follows: We have an input space

X and an output space Y. There is an unknown single-valued function from X to Y which will be

referred to as the target function f. One is given a training set L which consists of a set of m sam-

ples of the target function, perhaps made with observational noise. (The set of the X components

of the elements of L is written as LX, and similarly for the Y components.) One is then given a

value from the input space as a question. The problem is to use the training set to guess what output

space value corresponds to the given question. Such a guessed function from questions to outputs

is known as a hypothesis function h. An algorithm which produces a hypothesis function as a guess

for a target function, basing the guess only on the training set of m (X × Y) vectors read off of that

target function, is called a generalizer. The quality of such a generalizer (according to some appro-

priate measure) is here called the generalization error, or cost.

It is commonly assumed that Occam’s razor works well in supervised learning problems. The

question naturally arises of why it works well. One approach to this issue is to derive sufficiency

conditions for Occam’s razor to work [Wolpert 1990]. Another more common approach has been

to try, in essence, to formally justify Occam’s razor from first principles [Blumer et al. 1987, Sor-

kin 1983]. One recently popular attempt to do this [MacKay 1991, Berger et al. 1992, Loredo 1990,

Jeffreys 1939, Gull 1989a, Garrett 1991] has relied on using “Occam factors” in the context of con-

ventional Bayesian analysis [Skilling 1989, 1992, Gull 1989ab, Loredo 1990, MacKay 1991, Bun-

tine and Weigend 1991 and references therein, Wolpert and Stolorz 1992]. This paper discusses

some of the difficulties, in the context of supervised learning, with using this Bayesian “Occam

factors” argument to infer Occam’s razor.

Section 1 synopsizes the Occam factors argument. Section 2 then presents some reductio ad

absurdum difficulties with that argument. Section 3 goes on to present an alternative Bayesian
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analysis which explicitly does not result in Occam’s razor. Finally, section 4 discusses the under-

lying causes for the difficulties with viewing the Occam factors argument as a proof or “automatic

embodiment” of Occam’s razor.

Throughout this paper I will use the notation P(.) to mean either a probability function or a

probability density function; the context should make the meaning clear.

1. OUTLINE OF THE OCCAM FACTOR “PROOF” OF OCCAM’S RAZOR

The Bayesian Occam factor-based “proof” of Occam’s razor can be stated in several ways.

Some of them are explicitly based on the “evidence procedure”. This procedure has recently come

under attack. In particular, it has recently become appreciated that the evidence procedure has non-

trivial sufficiency conditions [Strauss1992, Wolpert 1992ab]. It appears that these conditions do

not hold very often, and in any case, it would be a very odd kind of Occam’s razor which holds

only when those sufficiency conditions are met.

Without explicitly using the evidence procedure, the Occam factor argument can be summa-

rized as follows (see [MacKay 1991, Berger et al. 1992, Loredo 1990, Jeffreys 1939, Gull 1989a,

Garrett 1991]). Consider a parameter space C. Define a “model”, or a “theorist”, as a mapping from

any c ∈ C to a target function from X to Y. (This is essentially the same as what is called a “meth-

od” in [Wolpert 1990] or an “interpreter” in [Pearl 1978].) As an example, if X is the real numbers,

R, as is Y, and if C is the set of possible quintuples of real numbers, the 4th order polynomial series

using those five parameters is a model: the model is the mapping {p0, p1, p2, p3, p4} →

Σ4
i=0

 pi x
i. (Note that this example could be easily modified so that either X and/or Y is not infi-

nite.) Another example of a model, which uses the same C but in a nonlinear manner, is the follow-

ing 5th order series of Legendre polynomials: {p0, p1, p2, p3, p4} → Σ4
i=0

Li(pi x). Note that the

image space of C (i.e., the set of functions from X to Y which are expressible with some c ∈C)
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differs for the two models. Together, a particular model and a particular set of parameter values

define a particular target function. Accordingly, I will often write (m, c) as shorthand for the func-

tion given by parameter c and model m.

Now consider two models, m1 and m2, with associated parameter spaces C1 and C2. For sim-

plicity, assume that both C1 and C2 are subsets of the same Euclidean vector space and have the

same dimension. Assume further that C1 ⊂ C2. (For example, C1 might be the interior of one hy-

percube in Rn, and C2 the interior of a larger hypercube, properly surrounding C1.) Let c1 refer to

elements of C1, and similarly for c2. Our event space consists of triples {data, model, parameter

value from the parameter space associated with that model}. So for example P(data = L, model =

m1, C2 parameter value = c2) is undefined.

Now in general, the posterior for a model, P(mi | L), equals P(L | mi) × P(mi) / P(L). In turn,

P(L | mi) = ∫dci P(L | mi, ci) × P(ci | mi). Examine two particular models, m1 and m2. Since we have

no way of choosing between the two models, by the “principle of indifference” [Loredo 1990], we

might wish to take P(m1) = P(m2). Using this gives

P(m1 | L) / P(m2 | L) = P(L | m1) / P(L | m2)

               = ∫dc1 P(L | m1, c1) × P(c1 | m1)   / ∫dc2 P(L | m2, c2) × P(c2 | m2).

This is the so-called “Bayes factor” for model m1 over model m2. Dividing it by the ratio of max-

imum likelihood values, {maxc1
[P(L | m1, c1)]} / {maxc2

[P(L | m2, c2)]}, we get the so-called

“Occam factor” [Loredo 1990].

To see why this might have something to do with Occam’s razor, for simplicity assume that

the ratio {∫dc1 P(L | m1, c1)} / {∫dc2 P(L | m2, c2)} can be well approximated by the ratio

{maxc1
[P(L | m1, c1)]} / {maxc2

[P(L | m2, c2)]}. (This might be reasonable, for example, if

P(L | mi, ci) is peaked as a function of ci, for both i = 1 and i = 2.) Also assume the “uninformative”
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form for P(ci | mi), namely a uniform density: P(ci | mi) = 1 / [∫Ci
dci 1] ≡ [V(Ci)]

-1. These conditions

give

Dividing the right-hand side by the ratio of maximum likelihoods, we see that the Occam factor for

model 1 over model 2 is simply the (inverse) of the ratio of volumes of the associated parameter

spaces.

To clarify the discussion, assume that in addition to P(ci | mi) = 1 / [∫Ci
dci 1], we also have ∫

dc1 [P(L | m1, c1)] = ∫ dc2 [P(L | m2, c2)] (whether or not the ratio of those integrals equals the ratio

of the respective maximum likelihoods). Under this assumption, the ratio of P(m1 | L) to P(m2

| L) is just the ratio of volumes of the parameter spaces. So everything else being equal, the “bias”

favoring m1 over m2 is given by (the reciprocal of) the ratio of the volume of C1 to the volume of

C2. Models with a large a priori range of possible parameter values are penalized. This is the basis

for the conventional “Occam factor” argument for why Occam’s razor must hold a priori ([MacK-

ay 1991, Jeffreys 1939, Berger 1992, Loredo 1990, Gull 1988, Garrett 1991]), for the case where

C1 and C2 have the same dimension but different volumes.

Now in supervised learning it is almost always the case that what we are ultimately interested

in isn’t “models” at all, but rather input-output functions. After all, almost always the objects as-

sociated with real world costs are those functions. Moreover, it is not even clear that probabilities

over models have physical meaning. For example, how could we ever observe that one particular

model has probability 1? (As opposed to observing that one particular input-output function, which

one can fit with (usually) many models, has probability 1.) What could such a statement mean?1

To circumvent this issue and also deal directly with the ultimate objects of interest, we must

     =    .
P(m2 | L)              V(C1) × maxc2

 [P(L | m2, c2)]

P(m1 | L)              V(C2) × maxc1
 [P(L | m1, c1)]



6

extend the conventional argument given above to deal with functions rather than models. In mak-

ing this extension we must be very careful to define our probabilities precisely. For example, if X

is finite, and Y is R, then f lives in a Euclidean vector space, just as C does. In such a scenario

transforming between probability densities over C (the realm of Occam factors) to probability den-

sities over f (the realm of that which directly interests us) involves multiplying by Jacobians, de-

termining the single-valuedness of the mapping between C and f’s, etc. If both X and Y are un-

countable, then the math becomes even more messy, since the cardinality of C differs from that of

the set of all f’s.

This potentially crucial fact is ignored in the standard treatments of Occam factors, which con-

tent themselves with calculating probabilities of models rather than functions. So to parallel those

treatments, and also to keep the analysis relatively simple, here I will take both X and Y finite (al-

though C is still a subset of a Euclidean vector space). As demonstrated below, doing this means

there are no Jacobian factors or the like introduced when we extend the analysis from models to

functions.

Using such a finite X and Y, let Fm(c') indicate the set of c ∈ C such that (m, c) = (m, c'). All

the c in Fm(c') code for the same function, (m, c'). So if f is only expressible with the single model

m, the probability of the function f = (m, c') is given by P(m, c : c ∈ Fm(c')), or just P(m, Fm(c'))

for short. This probability is the integral over all c ∈ Fm(c') of the density function P(m, c). In other

words, f is a (function-valued) random variable defined over the event space of models and asso-

ciated parameter values; if f is only expressible with the single model m, then P(f) =

∫ dc P(c, m) δ((c, m), f).

Let f1 be the function expressible as (m1, c1), and let f2 be the (different) function expressible

as (m2, c2). We are interested in P(fi | L) for i ∈ {1, 2}. For convenience, assume that f1 can not be

expressed with m2, and f2 can not be expressed with m1. (The parameter spaces of the two models

overlap - recall that C1 ⊂ C2 - but there is no a priori assumption that the models’ image spaces

of possible target functions overlap.) Then if we assume that the only possible models are m1 and
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m2 (i.e., all other models have zero probability), we can write P(fi | L) = P(mi, Fmi
(ci) | L) =

P(Fmi(ci) | mi, L) × P(mi | L).

This is important because in most real-world scenarios, it is P(f | L) which is of primary interest,

not P(m | L). Yet as mentioned above, the arguments in the Occam factor literature usually concern

themselves exclusively with P(m | L). This is rather unfortunate, since the preceding analysis

shows that in general the object of primary interest, P(fi | L), is not equal to P(mi | L) up to an overall

proportionality constant, even in those simple cases where we don’t have to worry about Jacobians

and the like. In particular, the most likely function (given the data) need not even be expressible

by the most likely model (given the data). So stopping the analysis short by only analyzing poste-

riors over models can give misleading results.

On the other hand, P(f | L) also exhibits an Occam factor effect, just like P(m | L). Moreover,

although it is not true in general, under certain assumptions P(f | L) is proportional to P(m | L), so

that it reflects Occam factors in the exact same manner as P(m | L). In particular, this is the case

for the assumptions made in this section (together with new ones introduced below).

More precisely, use Bayes’ theorem to re-express P(Fm(ci) | mi, L) in our formula for P(fi | L),

thereby getting P(fi | L) ∝ P(L | mi, Fm(ci)) × P(Fmi
(ci) | mi) × P(mi). An important point to note is

that P(mi | L) has dropped out. (Note also that P(mi | L) is simply the sum over distinct sets Fm(.)

of P(fi | L) = P(mi, Fm(ci) | L).)

Using this result, and making the same assumption of uniform P(mi) used to calculate

P(mi | L), we can write

Now assume that both f1 and f2 have the same likelihood value, P(L | fi). Also assume that

  =   .
P(f1 | L)     P(L | m1, Fm1(c1)) × P(Fm1(c1) | m1)

P(f2 | L)     P(L | m2, Fm2(c2)) × P(Fm2(c2) | m2)
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P(Fmi
(ci) | mi) = κ / [∫Ci

dci 1] for some constant κ. (This would occur for example if P(ci | mi) were

uniform over all allowed ci, and if the Ci-space volume corresponding to any function f expressible

with mi were a constant, independent of f or i.) Then we get

P(f1 | L) / P(f2 | L) = [∫C2
 dc2 1] / [∫C1

 dc1 1].

Just like before, everything else being equal, if one’s model has a large volume, one gets penalized.

Note that this argument doesn’t say that, everything else (e.g., the likelihood) being equal, one

should use only the model mi with the smallest parameter-space volume, V(Ci). In fact, it doesn’t

even say that, everything else being equal, if one must use either model m1 or model m2 one should

use the model with smaller volume. (After all, P(f1 | L) > P(f2 | L) does not necessarily imply that

the expected loss using f1 is less than the expected loss using f2 - see [Wolpert and Stolorz, 1992].)

What it does say is that, everything else being equal, the model mi with smallest volume will con-

tribute the most to the posterior average, i.e., to the (quadratic loss function) Bayes-optimal guess,

Σf f × P(f | L). This is the sense in which the argument recounted above can be viewed as related to

Occam’s razor.

Finally, note that we are examining P(Fmi
(ci), mi | L), not (for example) P(Fmi

(ci), mi | mi, L)

= P(Fmi
(ci) | mi, L). In other words, we are not talking about something like “the probability of f

given model m”. (After all, if m were given, there would be no point in calculating things like

Bayes factors.) This is despite the fact that we got from posteriors over models to posteriors over

functions by multiplying by P(Fmi
(ci) | mi, L).

2. FLAWS DUE TO FREEDOM TO REDEFINE MODELS

There exist a number of ways to see that the traditional Occam factor argument recounted
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above must be based on ultimately ad hoc assumptions. For example, if I only give you two func-

tions from X to Y, say y = x2 and y = sin(x), it would be an amazing piece of inference to deduce

a priori which is more likely without making any ad hoc assumptions. Which are more likely in

the universe, parabolas or sine waves? However if one reasons using “models” in the Occam-fac-

tor-type manner, one would think that one might be able to answer this question from first princi-

ples. For example, one might let sin(x) be the function (m1, c1), and x2 the function (m2, c2), for

some essentially arbitrary models m1 and m2. As above, assume that sin(x) can not be expressed

with model 2, and similarly for x2. Then P(sin(x)) / P(x2) = P(m1, Fm1
(c1)) / P(m2, Fm2

(c2)), which

equals [P(Fm1
(c1) | m1) / P(Fm2

(c2) | m2)] × [P(m1) / P(m2)] = the Occam factor for model m1 over

model m2, if we make the assumptions for P(Fmi
(ci) | mi) and P(mi) made in the “proof” of Oc-

cam’s razor recounted above.

This illustrates what is perhaps the most important shortcoming of the Occam factor argument:

it evaluates probabilities by using models, but there is no a priori protocol for how one should con-

strain the space of possible models. An example of the problems this can cause is provided by

MacKay, in the setting where the image spaces of (functions expressible by) two models overlap,

so that there are functions they can both express. In [MacKay 1991] he writes “... imagine that for

two models, the most probable interpolants happen to be identical [i.e., the most probable function

expressible with model 1 is the same as the most probable function expressible with model 2]. In

this case the generalization error for the two solutions [i.e., for the two most probable functions]

must be the same. But the .... [Occam-factor-based posterior] will not in general be the same: typ-

ically, the model that was a priori more complex will suffer a larger Occam factor ...” In other

words, a particular target function f expressible by both models might be considered either com-

plex or simple - and penalized accordingly - depending solely on the whim of the researcher as to

what model to use. This means that when using Occam factor type arguments, which model the

researcher uses can affect the function (s)he will guess. However almost always when engaged in

supervised learning one is ultimately concerned solely with the generalization error. And the gen-



10

eralization error of a particular f is independent of what model is used to express that f (obviously).

The conclusion is that the correlation between how Occam factor type arguments advise us to guess

and that which we are interested in (generalization error) can be poor.2 In other words, if Occam’s

razor were simply a ramification of Occam factors and nothing more, we would be forced to con-

clude that Occam’s razor has little to say concerning generalization error.

In fact, any argument assigning posteriors by measuring the volume of allowed parameter

space, without any concern for the model being used, has a number of problems. (No such concern

is present in the Occam factor argument; it is precisely this lack of concern which allows MacKay

to make his statement). One such problem follows from the fact that one can always bijectively

map a space of parameters into a subset of that space. In fact, one can always bijectively map an

n-dimensional Euclidean parameter space with arbitrarily large volume into a 1-dimensional Eu-

clidean parameter space with arbitrarily small volume (although in the case where the dimensions

of the spaces differ, such a map will not be differentiable, in general). Without explicit consider-

ation of what model one is using, there is no formal way to distinguish between the pre-mapping

and post-mapping models. Therefore without such consideration, one can not derive single-valued

results. (See the discussion in [Wolpert 1990] concerning Occam invariances.)

One doesn’t have to go to the trouble of bijectively mapping entire parameter spaces to run into

problems however. As an example, modify the Occam factor argument by introducing two new

models, m1' and m2', with the same parameters spaces as m1 and m2, namely C1 and C2 respective-

ly. Let m1' = m1 except for one small change: whereas the target function f1 is expressed by any

element (m1, Fm1
(k)) (k being a particular member of C1 such that f1 = (m, k)), any element

(m1', Fm1
(k)) does not express f1, but rather expresses f2. Other than that single exception, m1' =

m1, i.e., (m1', c1) = (m1, c1) ∀ c1 ∈ C1 such that c1 ∉ Fm1
(k) = Fm1' (k). Similarly, let m2' = m2

except for one small change: the target function (m2', Fm2
(t)) does not equal f2, but rather equals

f1. (In [Wolpert 1990], similar modifications of the model are called “Occam transformations”.)

Neither m1' nor m2' are “illegal” models. Furthermore, there is no a priori reason not to set the
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ratio P(m1') / P(m2') equal to one, just like the ratio P(m1) / P(m2). However if we accept this ratio,

and then go through the exact same reasoning used in the Occam factor argument (only using m1'

and m2' rather than m1 and m2), we come to the exact opposite conclusion: P(f1 | L) / P(f2 | L) =

[∫C1
dc1 1] / [∫C2

dc2 1]. So again we see that the conclusions of Occam factor type arguments are

not single-valued, in general.

One might try to respond to the foregoing by arguing that the Occam factor argument should

only be made for “reasonable” models, and that, for example, the models m1' and m2' discussed

above aren’t “reasonable”. Such an argument completely negates all claims to formal rigor how-

ever. Indeed, we have absolutely no assurances that we won’t accidentally stumble across such

“unreasonable” models in real life.

In addition, such an argument invites a whole host of difficulties: How does one formally set

the dividing line between “reasonable” and “unreasonable” models? Isn’t it true that in practice al-

most all of the models which are excluded as “unreasonable” are complicated (in which case by

restricting ourselves to “reasonable” models we’re already assuming Occam’s razor and are there-

fore being circular)? For that matter, is the dividing line between “reasonable” and “unreasonable”

models really sharp, or is it instead gradual, in which case all models, even “reasonable” ones, have

different priors, depending on their “reasonableness”? If it’s gradual, then to have any confidence

in one’s results, mustn’t one rigorously prove that the approximation of ignoring all models except

those which are most “reasonable” doesn’t introduce large errors? etc., etc.3

There are other peculiar aspects to performing the analysis over models rather than over func-

tions, in addition to those mentioned above. Perhaps the most obvious of these is the fact that the

very term “Occam’s razor” is used in a somewhat idiosyncratic fashion in model-based Occam fac-

tor arguments; it is being taken to mean a bias in favor of simpler models over more complex ones.

This contrasts with the more common usage in supervised learning where it means a bias in favor

of simpler functions over more complex ones [Wolpert 1990, Blumer et al. 1987, Sorkin 1983,

Pearl 1976].
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One might worry that this could result in a sharp difference between the predictions of an anal-

ysis based on favoring simpler functions and an analysis like the Occam factor argument which

favors simpler models. In this regard, note that although the Occam factor calculations presented

above are for posterior probabilities, they hold just as well for prior probabilities (P(f) =

P(Fm(c) | m) × P(m) ∝ 1 / V(Cm)). In other words, the Occam factor argument can be viewed as,

at its base, an indirect argument for how to set prior probabilities over functions, P(f). However it

does not result in a P(f) similar to those usually considered when one performs Bayesian analysis

over functions directly. For example, it does not result in a uniform prior, or a prior favoring

smooth f, or a prior penalizing “complex f”. In fact, it might very well result in a prior favoring

“complex f”, depending on the models used and on one’s notion of what a “complex” function is.

(At a minimum, there is no guarantee that it won’t do this.) This worrisome aspect of the Occam

factor argument will be returned to later.

3. INTERNAL CONSISTENCY VERSUS THE PRINCIPLE OF INDIFFERENCE

One way around these problems is to ignore “models” altogether and consider probabilities

over target functions directly. It is hard to find counter-arguments to the view that, if it is at all ra-

tional, Occam’s razor must hold for a complexity measure which depends solely on the input-out-

put function, and not (directly) on how the function is expressed (see the quotation from MacKay

above and [Wolpert 1990]). After all, in general one can more easily justify assigning particular

priors (e.g., uniform priors) to functions rather to than models.

If, nonetheless, one does insist on considering probabilities over models, then it is imperative

that one be formal and rigorous. Without such formality one isn’t performing a proper Bayesian

analysis, and to quote John Skilling, there is only one “valid defense of using non-Bayesian meth-

ods, namely incompetence” [Skilling, 1992].

Following this admonition of Skilling, we should set all distributions - and in particular the
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priors P(mi) - in an axiomatic, formal, and consistent manner. Unfortunately there is no currently

known desideratum which allows us to set the priors over models in such an axiomatic manner, for

any and all scenarios. In particular, the principle of indifference, which would suggest setting uni-

form priors over models (as in the conventional Occam factor arguments recounted above), in fact

does not apply to the setting of P(m). This is because the principle of indifference is predicated on

there being no relevant distinction between the objects under consideration. Accordingly, it could

only apply if there were no relevant pre-data distinction between the models. But the whole point

of the Occam factor argument is to show that there is a relevant distinction between the models

(namely, the volumes of their parameter spaces). So Occam factors, conventionally justified by us-

ing the principle of indifference, also demonstrate the inapplicability of the principle of indiffer-

ence.

As it turns out, in those scenarios in which one can apply a desideratum to fix the P(mi), often

the resultant P(mi) are not those assumed in the Occam factor argument. For example, consider the

situation where we have two possible sets of models, M and M', consisting of models {m1, ..., mN}

and {m'1, ..., m'N'} respectively, and associated with two different event spaces. (For example, M

might consist of decision trees of various types, and M' might consist of Walsh polynomial expan-

sions of various types.) Scientist A uses the model set M, and scientist B uses the model set M'.

Just as in the original version of the Occam factor argument presented above, assume that any func-

tion f which is expressible with a model from M is expressible with only one model m from M.

Make the same assumption for M'. Also make the assumption made in the Occam factor argument,

that P(Fmi
(ci) | mi) = κ / [∫Ci

 dci 1] for all mi ∈ M, and again, similarly for the models in M'.

For this two-scientist scenario, one desideratum one might want to apply is that of “internal

consistency”. It says that “if a conclusion can be reasoned out in more than one way, every possible

way must lead to the same result” ([Loredo 1990]). In other words, the two scientists must set pri-

ors over their models in such a way that the difficulties in the Occam factor argument discussed

above can not arise. It particular, they must set priors over their models in such a way that it can
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not matter which model set they use (the two possible ways in which “a conclusion can be reasoned

out”).

Interestingly, it turns out that this desideratum is exactly equivalent to assuming a uniform prior

P(f) (in contrast to the non-uniform P(f) arising from a scientist’s assuming uniform P(m)). To see

this, let f1 be a function expressible with both model m1 and model m'1, and let f2 be a function

expressible with both model m2 and model m'2. The desideratum of internal consistency says that

the ratio of posteriors, P(f1 | L) / P(f2 | L), must depend only on the expressed quantities, f1, f2, and

L. In other words, that ratio must be independent of which model set one uses, of whether one is

scientist A or scientist B. If we define parameters c1, c2, c'1, and c'2 by the two equations

(m1, Fm1
(c1)) = (m'1, Fm'1

(c'1)) = f1 and (m2, Fm2
(c2)) = (m'2, Fm2

(c'2)) = f2, this requirement means

that

If we now expand P(m1, Fm1
(c1) | L) = P(L | m1, Fm1

(c1)) P(m1, Fm1
(c1)) / P(L), and similarly for

the other three probabilities, then divide both sides of our equality by P(L | f1), multiply both sides

by P(L | f2), and as in the Occam factor argument assume that P(Fm(c) | m) = κ / V(C) for all m ∈

M or M' and for all c ∈ Cm, we get

The only way this equality can hold in general, for any model sets, is if for any model m and asso-

ciated parameter space C, P(m) / V(Cm) equals some constant which is the same for all models in

   =   .
P(m1, Fm1(c1) | L)       P(m'1, Fm'1(c'1) | L)

P(m2, Fm2(c2) | L)       P(m'2, Fm'2(c'2) | L)

  =   .
P(m1) V(C2)       P(m'1) V(C'2)

P(m2) V(C1)       P(m'2) V(C'1)
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a given model set.4 In other words, to satisfy our desideratum, whether we are scientist A or scien-

tist B, we must set the prior of a model as proportional to the associated volume in parameter space.

It is easily verified that this scheme for fixing priors ensures that the problems with the Occam

factor argument recounted above - and in particular the problem arising when one redefines mod-

els to get the exact opposite guess - do not occur. With this scheme, the freedom to redefine models

will not result in any contradictions. Nor will the possibility of having two models guess the same

“interpolant”, as in MacKay’s comments, cause any trouble. This scheme for choosing P(m) also

has the (very reasonable) ramification - absent from the uniform P(m) case - that so long as

ΣN
i=1

V(Cmi
) = ΣN'

i=1 V(Cm'i
), P(f) has the same value whether f is expressed with model set M or

model set M'. (P(f) = P(m, Fm(c)) = P(Fm(c) | m) × P(m) = κ × P(m) / V(Cm), where due to normal-

ization of P(m), the condition on the volume sums, and the constancy of the ratio for either model

set, the ratio has the same value for both model sets.)

On the other hand, the model priors of this scheme exactly cancel the ratio of volumes in the

Occam factor; there is no more automatic Occam’s razor. Indeed, in addition to assuming the mod-

el priors of this scheme, make the Occam factor argument’s assumptions that i) P(Fm(c) | m) =

κ / V(C); and ii) any function expressible with at least one model from our model set is expressible

with only one such model. Then the ratio of posteriors is given by the ratio of likelihoods,

P(f1 | L) / P(f2 | L) = P(L | f1) / P(L | f2). In other words, according to the principle of internal con-

sistency, the assumptions of the Occam factor argument imply that P(f) is uniform over all f ex-

pressible by any of the models in the scientist’s set of models. This means in particular that even

if the principle of internal consistency results in wildly varying P(m), one should not consider this

“unreasonable” unless one also considers it “unreasonable” to have a uniform P(f).)

This contrasts with the case with the principle of indifference, for which the assumptions that

P(Fm(c) | m) = κ / V(C) and that there is only one model to a function result in little in the way of

generally obeyed laws concerning P(f). Combined with the principle of indifference, those as-

sumptions only imply that P(f) is uniform over those f all expressible with the same particular mod-
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el; the precise form of P(f) as one ranges over all possible f depends on the boundaries between

regions of f’s all expressible with the same model. (This implication follows from the fact that P(f)

= P(Fm(c), m) = P(Fm(c) | m) × P(m).) As an aside, note that there are some other interesting im-

plications of the principle of internal consistency, in particular for the distribution P(f | m, L). See

footnote 5.

It is not the purpose of this paper to argue strongly that one should use the principle of internal

consistency and adopt its implications for priors over models. Rather the point is that by using that

principle one can make an argument which is at least as formally rigorous as the traditional Occam

factor argument, and yet reach the opposite conclusion. In particular, note that those who would

claim to have proven Occam’s razor using Occam factors must disagree with the conclusion of the

internal consistency argument concerning the ratio of the posteriors of f1 and f2. They must claim

that a priori, for first principles reasons alone, so long as the volumes of the associated models dif-

fer it is theoretically impossible that the ratio of posteriors of two functions equals the ratio of like-

lihoods. In other words, they must claim that it is theoretically impossible that the prior over func-

tions f is flat. It is hard to see how this claim can be substantiated; they must argue that their argu-

ments assuming a uniform P(m) over some ad hoc restricted set of “reasonable” models are a priori

more sensible than simply assuming a uniform P(f). What makes the Occam factor argument so

odd is this very claim that uniform P(f) can be ruled out by first-principles reasoning.

There is an element of “smoke and mirrors” in the use of models, at least as far as supervised

learning is concerned: It is perfectly feasible to perform Bayesian analysis in supervised learning

without considering anything other than functions and training sets; there is no a priori need for

models. Moreover, use of models can be quite obscuring, by (for example) leading one away from

so straight-forward a prior as P(f) = constant.

Of course, if one doesn’t use models in one’s Bayesian analysis, Occam factors never arise. In

essence, the “automatic embodiment” of Occam’s razor in Bayesian analysis can be viewed as a

side-effect of using models to implicitly set the prior over f. In general the effect does not arise if

one performs the analysis directly in the objects of interest, namely the functions from X to Y.
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4. FLAWS DUE TO NOT INTEGRATING OVER ALL MODELS

Even if one accepts the presumption of the Occam factor argument that one should perform the

Bayesian analysis using models rather than functions, there are still a number of difficulties with

the claim that one has inferred Occam’s razor. This section discusses some of those difficulties, by

highlighting the flaws in the logical argument presented in section 1.

First, note that in reality, P(f | L) isn’t set by a single model and/or single parameter value, as

assumed heretofore. Rather P(f | L) = Sm ∫ dcm {δ((m, cm), f) × P(m, cm | L)}, where the Kronecker

delta function restricts the integral to those models m and associated parameters cm which give the

function f. The integrals each run over the (in general varying) parameters spaces associated with

the models m. As discussed below, by “Sm” is meant a sum of some sort, running over models.

This equation for P(f | L) raises a major problem for any model-based analysis of P(f | L): Let

me go about constructing models, and for each one let me ask you if it’s completely, one hundred

percent impossible, or if it instead has some non-zero prior probability, however small. In almost

all conceivable situations, you will never answer that the probability exactly equals zero.6 This

means that in almost all conceivable situations, just to express P(f | L) in terms of models requires

that Sm be some kind of “super-integral”, which runs over all possible models with image functions

from X to Y. The math for this has never been worked out. (Indeed, it seems to be non-trivial sim-

ply to define the space of all possible models, since it implies all possible parameter spaces.) In

other words, for almost all conceivable situations, the math for calculating that which we are inter-

ested in (P(f | L)) in terms of models has never been worked out.7

The Occam factor argument circumvents this problem rather disingenuously, by implicitly as-

suming not only that there are countably many models with non-zero prior, but that there are in fact

finitely many such models. In other words, it takes Sm to be a sum over a finite number of m. In
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this section, I will make the slight relaxation of this assumption by allowing the mere possibility

that there are countably infinite models with non-zero prior. In other words, I will write P(f | L) =

Σm ∫ dcm {δ((m, cm), f) × P(m, cm | L)}, where the sum is over a countably infinite set. The points

I wish to make in this section can be made using this slight relaxation; for current purposes, there

is no reason to consider the full-blown possibility of allowing all models.

For simplicity’s sake, assume P(cm | m) = 1 / V(Cm). Then up to an overall constant we can

rewrite our sum-integral as P(L | f) × Σm ∫dcm {δ((m, cm), f) × P(m) / V(Cm)}. First, two points of

nomenclature: i) Define the integral in this expression as the “Occam bias”. It is the bias in favor

of a function which arises independent of the likelihood, due solely to the fact that the function can

be expressed by certain models. ii) Refer to the assumption that for all models m P(m) ∈ {0, k} for

some constant k - the assumption made in the conventional Occam factor argument for Occam’s

razor - as the assumption of “flat” P(m). The Occam factor argument for Occam’s razor says,

loosely speaking, that if all functions can only be expressed by a single model, and if the volume

of parameter values corresponding to a function doesn’t vary with the function or model, and if

P(m) is flat, then the Occam bias favors those functions f which can be expressed with a “simple”

model.

Note that if P(m) is non-zero for enough models, then in fact there will be more than one model

which can express a given f, and our Occam bias is found by averaging the Occam factors over all

those models which are capable of expressing f (loosely speaking). In such a situation, even if P(m)

is flat, the fact {f1 can be expressed with a simple model whereas f2 can not} does not imply that

the Occam bias favors f1. One has to consider all the models which can express the two functions.

Indeed, if f1 can be expressed with one model and f2 with two, then even if f1’s model is simpler

than either of f2’s, it will often be the case that f2 would have the higher posterior.

Moreover, consider the case where for any function there are many models with non-zero prior

which can express that function (a situation which almost always holds in supervised learning

when X and Y are finite). In this case, to find the posterior one has to sum over many Occam bias
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terms. Some such terms might be relatively large, but the fact that we’re summing over many terms

would be expected to hide this somewhat; if you have two sums, Σ1 and Σ2, both consisting of

many terms, the fact that the largest term in Σ1 happens to be greater than the largest term in Σ2

doesn’t give you strong reason to believe that Σ1 > Σ2. So for this scenario, with flat P(m), there is

little bias favoring a function just because it can be expressed with a particularly simple model. In

other words, as soon as one admits of enough possible models, even if one accepts the assumption

of flat P(m), the Occam factor “proof” of Occam’s razor (in the sense of a bias favoring functions

which can be expressed with simple models) dissipates.

So the first crucial assumption in the Occam factor proof of Occam’s razor is that the set of

models with non-zero prior is extremely small. In other words, all models other than a select few

are assumed completely impossible, with exactly zero prior probability. Note that this is an as-

sumption, and is not based on first principles reasoning or any particular desiderata. One is tempted

to use a favorite phrase of Occam factor proponents and say that this assumption is in fact highly

“unreasonable”. After all, it’s hard to imagine how one could make a strong argument in favor of

restricting the support of P(m) so drastically.

This point can be summarized as follows: The contraction in parameter space described by Oc-

cam factors is a real phenomenon. But if one allows enough models, or even allows the changing

of the set of allowed models, the ramifications of that contraction need not have anything to do with

Occam’s razor.

In addition to having the set of models with non-zero prior be extremely small, the Occam fac-

tor argument for Occam’s razor makes another crucial assumption. This second crucial assumption

is that P(m) is “flat” and has the same value for those m for which it doesn’t equal 0. As was noted

previously, the principle of indifference does not justify this assumption. Yet if P(m) can be a func-

tion of m, all bets are off. In particular, as was shown above, if P(m) is proportional to V(Cm), then

no Occam’s razor ensues. In fact, independent of arguments like the principle of consistency, one

might argue that a flat P(m) is, explicitly, extremely peculiar. Why should all models have prior of

0 or k? Why can’t any models have any other prior values? And if some models can have other
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values, then what’s to prevent those “other values” from negating the Occam factor effect, as when

P(m) is proportional to V(Cm)?

One could say that even if P(m) is non-uniform, since the Occam factor effect biasing the pos-

terior in favor of simpler models (for few enough allowed models) is “automatic”, Bayesian anal-

ysis “automatically embodies” Occam’s razor. This is rather disingenuous however. One particular

case where P(m) is non-uniform is when the principle of internal consistency holds. For such a sce-

nario, would we want to say that, since the ratio of P(m)’s automatically favors more “complicat-

ed” models, Bayesian analysis “automatically embodies” the opposite of Occam’s razor?

CONCLUSION

In [Wolpert 1992c] the distribution P(generalization error = E | function guessed by the re-

searcher h, data L) is considered (an off-training-set generalization error being used). It is proven

there that if the universe is maximum entropy (i.e., if P(f) is flat), then this conditional probability

is independent of h. Therefore, unless one can prove that the universe is not maximum entropy, one

can not prove that the function one guesses affects likely generalization error, and in particular one

can not prove that choosing h according to Occam’s razor affects likely generalization error.

This means that there must be some rather problematic aspects to any “proof” or “automatic

embodiment” of Occam’s razor. In particular, there must be such aspects to the Occam factors-

based “automatic embodiment” of Occam’s razor.

One such aspect is the fact that the Occam factor argument concerns models. The first problem

with this is that the mathematics for performing a fully rigorous analysis in terms of models has

never been worked out, and appears to be highly non-trivial. To circumvent this difficulty, i.e., to

allow the mere possibility of performing an analysis in terms of models, the Occam factor argu-

ment must make an implicit (and very hard to justify) assumption: all but a countable number of

models have exactly zero probability.
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Given this assumption, the Occam factor argument results in favoring simpler models. How-

ever in the real world we’re almost always ultimately interested in functions expressed in terms of

those models. And in general, biases in favor of simple models need not correspond to biases in

favor of simple functions. So the Occam factors “Occam’s razor” can differ significantly from the

“Occam’s razor” which is more usually invoked in supervised learning, namely that one should fa-

vor simpler f.

Indeed, when you set things up in terms of functions, you find the Occam factor effect again,

but as a term in the prior over f’s. Stated differently, the Occam factor argument is, at root, just

another way (one of maybe hundreds) to set a prior over functions. It has nothing to do with data.

And the innocent-seeming assumption of a flat prior over models m - an assumption which lies at

the core of the Occam factor argument - corresponds to a hugely non-flat prior over the ultimate

object of interest, functions f. In addition, if rather than assuming a flat prior over models one uses

the principle of internal consistency to set the prior, one arrives at a non-flat prior, one which ex-

actly cancels the Occam factor, and therefore results in a uniform P(f). (In general, flat P(m) cor-

responds to non-flat P(f) and flat P(f) corresponds to non-flat P(m).)

Another problematic aspect to the Occam factors argument for Occam’s razor is that it depends

not only on having a countable number of models with non-zero prior; in fact the reasoning which

results in Occam’s razor depends crucially on having a flat P(m) which is non-zero for only a small

number of models. As it turns out, if one allows that many models are possible, and/or that proba-

bilities over models can vary, then the Occam factor effect disappears.

Alternatively, even if one is willing to restrict the prior over models to be flat with very small

support, then one is still in trouble if one can’t justify one’s choice of the support set. In particular,

if one sticks to Occam factor type arguments, then by changing that set of allowed models it’s pos-

sible to get contradictions in the calculations of probabilities of functions.

Certainly if one does, somehow, have prior knowledge of a flat prior over models which is non-

zero for only a small number of models, then the Occam factors “automatic embodiment” of Oc-

cam’s razor holds (i.e., everything else being equal, P(f) will be smaller for those f expressible only
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with models which can express many f). However this is a huge amount of prior knowledge (i.e.,

the Shannon information of such a distribution is extremely close to maximal). It is extremely dif-

ficult to see how that much knowledge could be derived, from first principles (as opposed to as-

suming it, in an ad hoc manner). This is especially true in the common real-world supervised learn-

ing scenarios, where any substantial prior knowledge concerning models is rare.

Phrased differently, the Occam factor argument is most naturally viewed as an equating of one

“reasonable”, but ad hoc, assumption (flat prior over models with only a small number of “reason-

able” models allowed) with another “reasonable”, but ad hoc, assumption (everything else being

equal, functions expressible with simple models are more likely). The Occam factor argument

shows that the “prior knowledge” contained in the one assumption is equivalent to the “prior

knowledge” contained in the other. It is not a proof of either one. It is a re-casting of Occam’s razor

rather than a derivation of it.

Ultimately, the entire issue is arriving at the prior over models. If one can’t justify one’s choice

of that prior on first-principles grounds, then one can not justify conclusions based on that choice,

on first principles grounds. Even if that conclusion is the model-based version of Occam’s razor.

All of this notwithstanding, it is important to note that this paper makes no claims concerning

how well Occam’s razor works in practice. This paper certainly does not argue that Occam’s razor

is false, and it also does not argue that the particular model-based form of Occam’s razor equivalent

to the assumption {flat prior over models with only a small number of models allowed} is false.

What this paper does argue is that this assumption is crucial to the Occam factor argument, and that

it has never been justified. Indeed, if one is going to try to argue things from “first principles”, then

the choice of prior over models which exactly negates Occam factors (and thereby induces a uni-

form P(f)) is at least as easy to justify as a choice of uniform prior over models. Accordingly, the

claim that the Occam factor argument somehow “proves” or “automatically embodies” Occam’s

razor in a rigorous manner is seen to fall short. Why Occam’s razor works, either for models and/

or functions, is still a deep mystery.
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FOOTNOTES

1. Especially, what could P(mi) mean if - as is often the case in the real world - I know that none

of the mi at hand can express the true f exactly? In general, it’s one thing to consider the probability

that this physical black box, sitting here in front of me, maps its input to its output via the function

f (and none other). It’s quite another thing to consider the probability that the input-output function

of this black box, sitting on the table in front of me, is in some sense associated with one and only

one particular non-physical “model” (and none other). (Especially if that model can’t even express

the f of the black box!) f is a real, physical property, of a real, physical object. It’s hard to see how

a model can be viewed the same way.

2. Note that this kind of argument also serves as a potent challenge to the common practice of set-

ting (hyper)priors over hyperparameters without any regard as to how those hyperparameters get

mapped to input-output functions. To see this, let f be a function which is parameterized in terms

of two different basis sets, B1 and B2. Assume that for both basis sets the probabilities involved

concern the same hyperparameters. (E.g., for both basis sets we have conditional priors P(expan-

sion coefficients | α), where α is a hyperparameter.) Then setting hyperpriors over those hyperpa-

rameters without concern for the basis set used will in general result in different posteriors for f,

depending on whether B1 or B2 is used. This means that the correlation between {how the hyper-

parameter procedure advises us to guess} and {that which we are interested in, i.e., generalization

error} can be extremely poor.

3. Note that even if the approximation in the last question is valid, so long as the “most reason-

able” models are allowed to have different priors from one another, one will not arrive at Occam’s

razor in general (see below). In sum, if we were content to not prove things rigorously and instead

rely on notions of what is and is not “reasonable”, then we might as well simply start with (the em-
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inently “reasonable”) Occam’s razor directly, and not pretend to “prove” it or “automatically em-

body” it.

4. To see this, replace the function f1 with the function f3. Just like f1, f3 can be expressed with m1.

Assume, however, that it can not be expressed with m'1, but that it can be expressed instead with

m'3. Now enforce our desideratum that both the ratio of the posterior of f3 to the posterior of f2 and

the ratio of the posterior of f1 to the posterior of f2 be independent of whether one is scientist A or

scientist B. The result is that P(m'1) / V(C'1) = P(m'3) / V(C'3). Except for very specially construct-

ed model sets B, we will be able to continue this way to force P(m') / V(Cm') to be the same for all

models in set B. In general, we will also be able to use this trick to force P(m) / V(Cm) to be the

same for all models in set A.

5. All of the arguments presented so far consider distributions of the form P(mi, Fmi
(ci) | L) rather

than P(Fmi
(ci) | mi, L). The reason for this is that, generically speaking, the condition-side of a con-

ditional probability distribution should include only that which is known, and we certainly don’t

know what the “true” model is. Nonetheless, it is straight-forward to calculate P(f | m, L) under the

assumption of internal consistency. To do this, let c* be a parameter value such that f = (m, c) for

any c ∈Fm(c*). We are invited to calculate P(m, Fm(c*) | m, L) = P(Fm(c*) | m, L). This can be

rewritten as the ratio P(Fm(c*), m | L) / P(m | L). The numerator is the kind of distribution we have

been discussing in the text. In particular, by the consistency principle the numerator is proportional

to the likelihood P(L | f) (assuming P(Fm(c) | m) ∝ 1 / V(C) and that the only model in our model

set which can express f is m, so that the consistency principle results in uniform P(f)). Therefore

this numerator is independent of m. The denominator is a marginalization of the numerator. Dif-

ferent choice of model m (and in particular different “parameterizations”) mean different P(m | L);

everything else in the expression for P(f | m, L) is independent of m.
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6. Of course, in stating this I’m implicitly assuming some notion of what it means to say “proba-

bility of model m = value”. But as was pointed out before (see footnote 1), this problem of giving

a precise definition to P(m) is highly non-trivial. All I’m saying here is that whatever one’s defini-

tion of P(m), it will almost always be the case that P(m) ≠ 0.0000 ... for any model m.

7. Note that for the finite X and finite Y case, there is no such “super-integral” difficulty if one

performs the analysis directly in terms of f (so that rather than priors over models, one directly con-

siders priors over functions). However there is a (less severe) version of this difficulty for an anal-

ysis performed directly in f space, if both X and Y are uncountable.

8. This issue of the multiplicity of models has other implications, besides those concerning Oc-

cam’s razor. For example, we can use it to characterize the technique of “model selection” as the

approximation P(f | L) = Σm ∫ dcm {δ((m, cm), f) × P(cm | m, L) × P(m | L)} ≅

∫ dcm* {δ((m*, cm*), f) × P(cm* | m*, L)}, up to an overall proportionality constant, where m* is

the model maximizing P(m | L). Viewed this way, model selection is seen to be essentially equiv-

alent to the “evidence approximation” (Gull 1989ab; MacKay 1991); rather than the noise or a reg-

ularization constant being the unknown hyperparameter, here it’s the model. One might expect this

approximation to be quite good when P(m | L) is strongly peaked about m*. It turns out though that

such peakedness is not a sufficient condition for the evidence approximation to hold; the evidence

approximation can be quite poor even when P(m | L) is strongly peaked. (See (Wolpert 1992ab,

Strauss 1992).) Accordingly, one should use model selection with great care.
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